preprocessing¶
preprocessing pipeline¶
-
ardent.preprocessing.__init__.
preprocess
(data, processes)[source]¶ Perform each preprocessing function in processes, in the order listed, on data if it is an array, or on each element in data if it is a list of arrays.
Parameters: - data (np.ndarray, list) -- The array or list of arrays to be preprocessed.
- processes (list) -- The list of strings, each corresponding to the name of a preprocessing function.
- process_kwargs (seq, optional) -- A sequence of dictionaries containing kwargs for each element of processes. Defaults to None.
Raises: TypeError
-- Raised if data is a list whose elements are not all of type np.ndarray.TypeError
-- Raised if data is neither a np.ndarray or a list of np.ndarrays.TypeError
-- Raised if an element of processes is neither a single string nor an iterable.ValueError
-- Raised if an element of processes is an iterable but not of length 2.ValueError
-- Raised if an alement of processes is a 2-element iterable whose first element is not a string.ValueError
-- Raised if an alement of processes is a 2-element iterable whose second element is not a dictionary.TypeError
-- Raised if an element of processes includes a dictionary with a key that is not a string.ValueError
-- Raised if any element of processes is not a recognized preprocessing function.
Returns: A copy of data after having each function in processes applied.
Return type: np.ndarray, list
resampling¶
normalization¶
-
ardent.preprocessing.normalization.
cast_to_typed_array
(data, dtype=<class 'float'>)[source]¶ Returns a copy of data cast as a np.ndarray of type dtype.
Parameters: - data (np.ndarray) -- The array to be cast.
- dtype (type, optional) -- The dtype to cast data to. Defaults to float. Defaults to float.
Returns: A copy of data cast to type dtype.
Return type: np.ndarray
-
ardent.preprocessing.normalization.
normalize_by_MAD
(data)[source]¶ Returns a copy of data divided by its mean absolute deviation.
Parameters: data (np.ndarray) -- The array to be normalized. Returns: A copy of data divided by its mean absolute deviation. Return type: np.ndarray
-
ardent.preprocessing.normalization.
center_to_mean
(data)[source]¶ Returns a copy of data subtracted by its mean.
Parameters: data (np.ndarray) -- The array to be subtracted from. Returns: A copy of data subtracted by its mean. Return type: np.ndarray
-
ardent.preprocessing.normalization.
pad
(data, pad_width=10, mode='constant', constant_values=None)[source]¶ Returns a padded copy of data.
Parameters: - data (np.ndarray) -- The array to be padded.
- pad_width (int, optional) -- The amount by which to pad. Defaults to 10.
- mode (str, optional) -- The padding mode used in np.pad. Defaults to 'constant'.
- constant_values (float, optional) -- The values to use in padding if mode='constant' If None, this is set to np.quantile(data, 10**-data.ndim). Defaults to None.
Returns: The padded copy of data.
Return type: np.ndarray